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Abstract. A thermodynamic criterion for the persistence of a n  irreversible process is derived 
from the method of associative distributions applied to the probability of large deviations 
in stochastic processes. Paths of relative maximum likelihood are determined from the 
condition that the distribution and associated distribution be non-defective. The latter 
predicts the threshold value of the noise strength and the paths are mirror images in time 
of one another. Based on the analogy with the central limit theorem and the method of 
associated distributions, the technique is used to estimate the error in approximating the 
actual distribution by one that is obtained in the diffusion limit, analogous to the normal 
distribution, for large deviations. The maximum power of the deviation is discussed in 
terms of the fractal dimension. 

1. Introduction 

Regardless of how small random thermal fluctuations may be, their cumulative effects 
over long time intervals will eventually cause an irreversible process to leave the domain 
of attraction of a stable equilibrium or stationary state. The fact that the expected 
time of exit is finite means that the system will almost certainly leave the domain of 
attraction of the time-independent state. The deterministic concept of stability no 
longer makes any sense and it must be replaced by some stochastic notion of ‘per- 
sistence’ of an irreversible thermodynamic process (Ludwig 1975). The aim of this 
paper is to obtain a thermodynamic criterion of persistency based on the method of 
associated distributions which is commonly used in the analysis of large deviations of 
sums of independent random variables (Feller 197 1). 

The problem may appear superficially to be related to the problem of delineating 
the range of validity of the principle of minimum entropy production (Prigogine 1949, 
Denbeigh 1952, Klein and Meijer 1954, Klein 1955). This principle asserts that the 
stationary state of a system in which an irreversible process occurs is that state for 
which the rate of entropy production has its minimum value, compatible with the 
external constraints which prevent the system from relaxing back to equilibrium 
(Prigogine 1947, de Groot 1951). Apart from the fact that the principle is known not 
to apply to stationary states far from equilibrium (Klein 1958), the entire perspective 
in associating a ‘maximum persistency’ criterion with a stationary criterion of ‘minimum 
entropy production’ (Kikuchi 1961, Kikuchi and Gottlieb 1961) is contorted. For small 
thermal fluctuations, there is an overwhelming probability that an irreversible process 
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396 B H Lavenda and C Cardella 

which is displaced from its stationary state will tend to evolve to it in the course of 
time. There it will spend the greater part of its time, making only rare excursions to 
neighbouring states. However small such probabilities may be, they may ultimately 
govern the evolution of the irreversible process over long time intervals (Wentzell and 
Freidlin 1970, Lavenda 1985a). Therefore the concept of persistency must be related 
to the probability of large deviations and, being a statistical concept, it cannot be 
defined within the framework of the macroscopic thermodynamics of irreversible 
processes to which the principle of minimum entropy production is necessarily confined. 

Denote by 9" the common distribution of a sequence of normalised sums, x, namely 
%,, ( x )  = P{ S,,/  a& C x} where S ,  = X ,  + X ,  + . . . + X,,, n 3 1 and the X, are indepen- 
dent (Bernoullian) random variables. For n + a, %,,(x) tends to the normal distribution 
%(x). Although such information is useful for moderate values of x, it becomes an 
empty statement for large values of x since then both 9,,(x)  and %(x) are approximately 
unity. The proof that 

r1 -Fn(x)I/[1 -%(x)l-+ 1 

as both x and n tend to infinity depends on whether the integral 

E[exp(sx)] < CO 

for all s in some interval Is1 < s* (Feller 1971 and § 3). This is known as Cramer's 
condition (Cramer 1938) and the proof is based upon the method of associated 
distributions. 

Such theorems on large deviations of independent and identically distributed 
random variables have been generalised to stochastic processes. Wentzell(l973, 1976) 
noticed that even when one is dealing with large deviations and improbable events, 
the major part of the realisations will occur within the immediate proximity of some 
well behaved function 4, and he obtained estimates of the form 

P { P [ X ( ' ) ,  4(*)1< S l > e x P { - ~ [ 4 ( ' ) 1 - N ~ ,  4(')1} 
for any 6 > 0, where p denotes the distance in the space of functions. Provided the 
remainder term R is small compared with the functional CL, then the latter is a measure 
of the difficulty that the process has in passing close to the function 4. For diffusion 
nrocesses, SZ is known as the Onsager-Machlup functional (Onsager and Machlup 
1953, Lavenda 1985a). But can the diffusion approximation be used to determine 
the probabilities of large deviations? In this paper, we shall show that the diffusion 
approximation does not work for large deviations and we obtain an estimate for its 
validity. Nevertheless, there is an 'action' functional which can be used to determine 
the probabilities for large deviations. 

2. The action functional for the two-level atom problem 

We shall analyse the simple model of Klein (1958), who used it to show that the 
entropy production does not decrease monotonically with time in the approach to the 
stationary state, to derive the action functional and its relation to a persistency condition. 
Consider a system comprising N atoms which can be in either of two energy states, 
0 or E. The system is placed in contact with a heat bath at temperature T and it can 
also absorb monochromatic radiation at a frequency v = E / h .  The conversion of the 
radiation energy into thermal energy of the heat bath constitutes the irreversible process. 
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Denote by pu(t) and p r ( t )  the probabilities of finding an atom in the upper and 
lower states at time t ,  respectively, with the restriction p , ( t )  + p r ( t )  = 1. An atom may 
make a transition between the two states by either absorbing or emitting a photon of 
energy E or by exchanging this energy with the heat bath. Let Or and e b  be the quantum 
mechanical transition probabilities per unit time for the transition from the lower to 
the upper state due to radiation and the heat bath, respectively. Regarding the heat 
bath, the transition from upper to lower states will be more favourable than the reverse 
transition by a factor exp( E /  T )  in units where Boltzmann's constant is equal to unity. 

If an atom is initially in the lower state, then three different kinds of events can 
occur in a small time A t :  an atom can remain in the lower state with probability 
( 1  - & A t )  where el = Or+  o b ,  or transitions to the upper state can take place with the 
a priori probabilities &At and &Att, due to radiative and thermal sources, respectively. 
The probability that out of Npl atoms in the lower level at time t ,  NP1 will remain 
there while NP, and NP, will jump to the upper level by absorbing radiation or thermal 
energy from the heat bath, respectively, is given by the well known multinomial 
expression (Kikuchi 1961) 

Pi{ PI ( t ,  t + A t  )) = [ ( Npl) !/ ( NP1) ! ( NP,) ! ( Np,) !]( 1 - & A t )  Np'( OrA t )  NP2( &,A t )Np3 .  
(2.1) 

The 'path' probability !PI is a function of the 'path' parameters { P I }  for a given initial 
state p I  (Kikuchi 1961). It is a product of two factors: one factor gives the number of 
different possible paths which are consistent with the compatibility condition 

PI ( t 1 = P I  + P2 + p3 
and the other factor is the a priori probability for an individual path which is charac- 
terised by the path parameters {PI).  

In an entirely analogous way, we can construct the path probability P,, for transitions 
from the upper to the lower states. The transition probabilities from upper to lower 
states are e b  exp(E/ T)At and &At, since downward transitions are more probable 
than upward transitions by a factor exp( E /  T ) ,  when the transitions occur through the 
exchange of energy with the heat bath, while the transition probabilities due to the 
coupling to the radiation field are symmetric. The probability that an atom will remain 
in the upper state in a small time interval A t  is ( 1  - & A t )  where e, = er+ e b  exp(E/ T ) .  
Out of Np, events, the probability that these will occur NP,, NP,, and NP6 times, 
respectively, is 

Pu{Pt( t ,  t +  A t ) )  = [( Npu) !/ ( NP4) ! ( NP5) ! ( NP6) !] 

X [ o b  exp(E/  T)AtINP.(  erAt)NP5(1 - B,At)NP6 (2.2) 
subject to the restriction that 

p , ( t ) = P , + P , + P 6 .  

Since the path probabilities for upward, (2.1), and downward, (2.2), transitions are 
statistically independent of one another, their joint probability distribution is simply 
their product P = PIPu whose logarithm is 

( l /N) In P{Pl( t ,  t + A t ) }  

= 1 p ,  In p ,  - 1 PI In PI + (P3 P4) In( & A t )  + (p2 4- f's) ln( f3,At) 
I I 

+PI l n ( l - 8 1 A t ) + P 6 1 n ( l - ~ u A t ) + ( ~ / ~ ) ~ 4 ,  (2.3) 
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for N sufficiently large to justify the use of Stirling’s formula. In fact for N arbitrarily 
large, we expect a type of law of large numbers to hold similar to a central limit 
theorem. In the limit as N + w ,  the path of maximum likelihood is obtained by 
maximising (2.3) with respect to the path parameters { Pz} subject to the condition that 
the probability be conserved, which for the lower state reads 

p I (  t +  A t )  - P I (  t )  = P4+ P5 - P2 - 5. 
This procedure is entirely analogous to the derivation of the equilibrium Boltzmann 
distribution under the constraints that the energy and number of particles be conserved. 
Hence, the constraint can be introduced explicitly into the variational principle 
In P{ P,( t, t + A t ) }  = max by the method of Lagrange multipliers. In this way we obtain 
the expressions for the maximum values of the independent path parameters as 

P; =plO,At eS+O(At2),  

P: =pUObAt e‘E’T’-S’+O(At2), 

PT =plObAf e‘+O(At*), 

P$ = p,O,At e-’ + O(At2), 

where s is the Lagrange undetermined multiplier. In the derivation of the maximum 
independent path parameters, { P:}, we have assumed that the dependent path para- 
meters P, =: p I  and p6 ;= pu since the time interval A t  is small. Moreover, their variations 
are related to the independent transition probabilities by 6P1 = -( SP2 + 6P3) and 6P6 = 
-(6P4+ 8P5) since p l  and p ,  were held constant in the variation (Kikuchi 1960). Upon 
introducing these maximum transition probabilities into the original expression to be 
maximised, we obtain 

(1/NI In @ { p ( t ) ,  p(r  + A t ) }  = -[s@,- H ( s ,  p)]At+O(At2) (2.4) 

H(s ,p )=[r f (e” - l )+ru(e -S- l ) ]  (2.5) 

d,  = ( 1/ A t ) [  p,( t + A t )  - P,( t ) l .  

where H ( s , p )  is the Hamiltonian 

with rJ =pJ@, and we have put 

The probability %{ p (  t ) ,  p (  t + At)} is the maximum of the path probability on going 
from { p , ( t ) }  to {p,( t+At)} in a short time interval A t  and it is a function of this time 
interval as well as the initial and final states of transition. By breaking up the small, 
but finite, time interval A t  into a sequence of subintervals, the right-hand side of (2.4) 
has the form of the negative of an action whose total time derivative is the Lagrangian 

(2.6) 
This is the motivation for calling (2.5) a Hamiltonian since it is the Legendre transform 
of (2.6). In order to obtain a more symmetric form, we can write s = s,-sl so that 
(2.6) becomes 

U P ,  @) = s@u- H ( s ,  P). 

p ,  $1 = (s, @) - {rf[exp(su - sI 1 - 11 + ru[exp(sl - s,) - 111 (2.7) 
where (s, @) denotes the scalar product 2,  s& 

Thus, beginning with the path probability, we have a succession of variational 
problems (Kikuchi 1961) which characterise the paths of maximum likelihood in the 
limit of an arbitrarily large number of systems, N .  Maximising the path probability 
with respect to the path parameters, under the subsidiary condition that the probability 
be conserved, we have obtained the probability for the transition between initial and 
final states in a small time A t  along the path of maximum likelihood. Then, by using 
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the Markov property, we can divide the time interval into a finite number of subintervals 
and the variation of all intermediate states will give the equations of motion of the 
paths of maximum likelihood as well as a physical interpretation of the Lagrange 
multiplier, s. This procedure differs from the equilibrium statistical mechanical method 
of identifying the Lagrange multipliers through the association of average values with 
the thermodynamic values of the relevant physical quantities such as energy and work 
(cf Cox 1950). Therefore, it is the Markov property which allows us to formulate a 
path integral approach, and in the 'thermodynamic' limit as N + CO, the exact average 
values can be replaced by their most probable values. 

In order to construct a path, we would consider a sequence of states {pi(t)}, 
{ p i (  t + At)}, {pi( t + 2At)}, . . . , and integrate over all possible values of the intermediate 
states between the fixed endpoints of transition. This would lead us to the familiar 
path integral formulation of non-equilibrium statistical thermodynamics (Lavenda 
1985a), except for the fact that we are considering the limit as N + CO which allows 
us to replace average values by most probable values (Lavenda 1985b), since in the 
limit of weak thermal fluctuations the fluctuating paths tend to coalesce about the most 
probable path given by the macroscopic laws of irreversible thermodynamics. Hence, 
over arbitrary time intervals, expression (2.4) will generalise to (Kikuchi 1961, Wentzell 
and Freidlin 1970, Lavenda and Santamato 1982) 

as N + CO subject to p (  to) = p(O) and p (  t,) = p'"'. In the Gaussian case, (2.8) was first 
derived by Onsager and Machlup (1953) by making use of the equivalence between 
means and modes of the distribution. We are thus led to minimise the functional in 
braces, subject to given end conditions, and this will provide a physical interpretation 
of the Lagrange multiplier, s. 

The Hamilton equations for the functional in (2.8) are 

p,=(aH/as,)= rl exp(s,-sl)-r,exp(q-sS,), (2.9) 

S, = - (aH/dp,)  = -&[exp(q - s,) - 11, (2.10) 

which are to be solved subject to the prescribed boundary conditions. Hamilton's 
equations furthermore imply that 

(d /d t )H = (aH/asi)Si + (aH/api ) f i i  = 0 (2.11) 
i 

which means that H is a constant of the motion. It would then follow that any 
H = constant would be acceptable. However, we will now show that H = 0 is the only 
physically acceptable solution which determines two paths of maximum likelihood. 

3. Criterion of persistency 

Let us turn our attention to what may appear to be a completely unrelated problem. 
In problems related to random walk and renewal theory it sometimes turns out that a 
distribution may be defective. If 9 is a defective distribution then 9 ( m )  < 1 and the 
defect q = 1 - ~ ( c o )  is the probability of termination before the process can be renewed. 
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In  such a case one introduces the assumption (Feller 1971) that there exists a number 
s* such that 

33 

exp[(s*, p)]@(ddp) = 1. L 
A proper distribution 

9 ” ( d p )  = e”**P’9 (dp) ,  

(3.1) 

(3.2) 

can be defined if there exists a real root to the integral equation (3.1). Stochastic 
processes generated by 9# and 9 are said to be ‘associated’ with each other. Suppose 
that the integral 

X 

f(s) = 5 e ‘”3P’9 (dp)  (3.3) 
--r 

exists for 0 G s 
is positive, f is a convex function. So too will be its logarithm 

s*. In this interval f is differentiable, and since its second derivative 

H ( s ) : =  Inf(s)  =In  E{exp[(s, PI]}. (3.4) 

To make contact with our preceding development, we identify the function H ( s )  
in (3.4). Consider two independent random impulse processes, p, and P I ,  which have 
a bivariate Poisson distribution 

(3.5) P { p u  = k, pi = j }  = [ e - ‘ ~ ( r , ) ~ / k ! ] [ e - ‘ ~ ( r , ) ’ / j ! ]  

with average rates r, and rf,  respectively. (Note that the intensity parameters are r , A t  
rather than r,. Since the moments are all proportional to At, this would have the effect 
of multiplying the left-hand side of (3.4) by Az. We shall come back to this point in 
§ 4.) Thus, the expectation in (3.4) is 

E{e‘S..P’ }=exp[-(r,+ rf)]  [ ( e s i r i ) ’ / j ! ] [ ( e s ~ r , ) k / k ! ] .  
kl 

(3.6) 

Furthermore, if the strengths, s, and sI, are equal in magnitude and opposite in sign, 
namely, sI = -su:= s, then (3.6) simplifies to 

(3 .7)  E{~(~. .P’ )  = e H ( s )  

where H ( s )  is precisely the Hamiltonian given in ( 2 . 5 ) .  
Since 9 itself is a bona fide distribution, a process with vanishing strength 

s = o  (3.8) 
renders H ( 0 )  = 0 and the first of Hamilton’s equations, (2.9), reduces to the deterministic 
rate equation 

L -  

hilt) = r, - r , .  (3.9) 
The causal or ‘thermodynamic’ path p‘( t ) ,  which is the solution of (3.9), is absolutely 
the most probable one since 

Q+[ p“)’ ,  p ’  9 = 1 (3.10) 

for N a. It is not surprising that the causal path arises in the limit where the strength 
of the noise source vanishes. The causal path maximises absolutely the probability 
distribution. 
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Considering the (convex) function H ( s ) ,  rather than the functional in (2.8), we 
can apply a Legendre transform (Gelfand and Fomin 1963) 

U P )  = SUP{(S, P )  - H ( s ) J  (3.11) 

to obtain the conjugate function L ( p )  which is of the same class as H. Since ( d H / d s , )  = 
P I ,  we have that for the particular choice s=si, the random impulse processes P I  
coincide with the deterministic rates of transitions. 

The novel and interesting point is that even though the distribution 9 is a proper 
distribution, the associated distribution 9# can also be a proper distribution for s # 0. 
Indeed for 

s 

s * = l n ( r u / r i )  (3.12) 

H (  s*)  = H (  st) = 0 and f (  s * )  = 1 which implies that the associated distribution 9' is 
a proper distribution. Now since H ( s )  is convex and (dH/ds)l,, ,* exists, it follows 
that ( d H / d s )  will have opposite signs at s = 0 and s = s*. From the first of Hamilton's 
equations, (2.9), we conclude that the two random processes induced by 9 and 9# 
will have drifts in opposite directions. 

The critical strength s* of the random process satisfies both of Hamilton's equations 
of motion (2.9), 

p:( t )  = r: - r? (3.13) 

and (2.10). We can appreciate equation (3.13) as the mirror image in time of the causal 
equation of motion (3.9). The path p * (  t )  is therefore referred to as the anticausal or 
'antithermodynamic' path and it is also a path of maximum likelihood (Lavenda and 
Santamato 1982, Lavenda 1985b). The novel point here is that this path is the result 
of a critical or threshold value of the strength of the underlying noise process. Although 
s can take on values between 0 and s*, it is only the latter value of the noise strength 
which generates a path of relative maximum likelihood and whose drift is opposite to 
that of the absolutely most probable path. In other words, only these processes are 
generated by proper distributions: the original distribution, 9, and its associated one, 
P. 

Since H ( s * )  = 0, the Lagrangian (2.7) simplifies to 

U p * ( t ) ,  @*(?)I  =C d 3 t )  In r? 
I 

= (d/dt)  c {pF(t) In r? }=:  (d/dt)W[p*(t)]  (3.14) 
I 

or 

W [  p * ( r ) ]  = 1 p?(  t )  In r? + constant. (3.15) 

Consequently, for any two states pi" and p'"' that are connected by the anticausal 
path, p * (  t ) ,  the transition probability (2.8) reduces to a difference in a function of state 

(3.16) 

subject to pi" = p * (  t o )  and p'"' = p * (  t ,  ). The stationary state { p?} is characterised by 
the detailed balance condition 

el/ 8, = P:/P? (3.17) 

@*{P"', p'"9 = e x p U N { ~ p * ( t , ) I  - w ~ * ( t , ) i } n ,  
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which is obtained by letting t + 0;) in the equation for the causal path (3.9), or in the 
limit as C +  --03 in the equation for the anticausal path, (3.13). This condition allows 
us to write (3.16) in the more suggestive form 

q3*{p'O', p'"'} = [ pT( t,);/p:]"":"J[ p"pF( to)]Np: '" ' .  (3.18) 

By letting to+ -a, we can assure ourselves that the aged system must have been in a 
steady state at some distant time in the past. In this limit, expression (3.18) reduces 
to the probability of a spontaneous fluctuation from the steady state along the anticausal 
path, namely 

I 

(3.19) 

where we have used Stirling's formula. The logarithm of the first factor is precisely 
the entropy of the non-equilibrium state p'"'. The second factor is, however, not so 
simply related to the entropy of the stationary state. 

The negative of the scalar potential, (3:15), has been referred to as the 'pseudo- 
entropy' (Kikuchi 1961) since it depends on a knowledge of the steady state { p;"}. For 
this reason, it has been argued that the 'principle of minimum pseudo-entropy produc- 
tion' cannot replace the 'principle of minimum entropy production' (Klein 1958). 
However, such knowledge is necessary in order that W be related to a persistency 
criterion. 

The foregoing analysis of a two-level system can easily be extended to a many-level 
system (Mathews et a1 1960, Kikuchi and Gottlieb 1961). This will illustrate the 
generality of our criterion H ( s )  = 0 for determining paths of relative maximum likeli- 
hood. Suppose a system has r states i = 1 ,  2, 3 , .  . . , r which are characterised by the 
state probability parameters { pl(  t ) } .  We consider an assembly of N such systems. The 
expression for the maximum transition probabilities (2.4) generalises to 

(1/N) lnW{p,(t)}, {Pl(t+At)}l= -[(S,P)--(s ,P)lAt+O(At') .  
(3.20) 

The Hamiltonian is a generalisation of that appearing in (2.7), namely 

H ( s ,  P) = C C'plev[exp(s, - sl)  - 11 (3.21) 

where 8, are the quantum mechanical transition probabilities per unit time that depend 
upon the specific mechanisms which induce transitions among the states of the system, 
and the prime on the sum means to exclude the state i. 

I J  

The variational principle (2.8) now gives the canonical equations 

PI = (aH/as,) = C' pJeJl exp(sl -s,) -p$,, exp(s, - s l ) ,  (3.22) 
J 

(3.23) 

as the conditions of stationarity of the integral. It is easily seen that the zero noise 
strength vector sf = 0 satisfies both canonical equations (3.22) and (3.23). The method 
of determining the critical vector, s*, is analogous to that of determining the characteris- 
tic form of an equation with r - 1 independent variables (cf Wnitham 1974). There, 
one considers a function W( p , ,  . . . , pl-l) which satisfies the differential equation 

H(s ,  P) = 0 (3.24) 
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where s denotes a vector with components 

si = a W/api. (3.25) 

The problem is to determine those curves in p space, p = p( t) ,  which are analogous 
to the characteristics of quasilinear equations. The total derivative of W along p is 

(3.26) 
I I 

Condition (3.24) determines the modulus of the vector s; there remain ( r  - 1 )  parameters 
which determine the characteristics or rays (Ludwig 1975). If these parameters are 
known we can construct the solution W from equation (3.24). Differentiating (3.24) 
with respect to pi yields 

C a2W/apjapi(aH/asj)+aH/api = 0. (3.27) 
j 

If we choose the special curves defined by 

then 
p i  = aH/as, 

Si = -aH/ap, 

because 

(3.28) 

(3.29) 

S, = (d/dt)(aW/ap,)  = C (a2W/aplapl)dJ' (3.30) 

Equations (3.28) and (3.29) are precisely Hamilton's equations (3.22) and (3.23). The 
vector s* with components 

s f  = M P 3 t ) / P 3  (3.31) 

will satisfy both of Hamilton's equations provided detailed balance (cf equation (3.17)), 

eIJP? = eJlp,", (3.32) 

J 

holds. In this case both of Hamilton's equations coalesce into the single set of equations 

(3.33) 

which are the equations of motion for the anticausal path (cf equation (3.13)). 
Detailed balance guarantees the existence of a scalar potential 

W p * ( t ) l  =c P3f){ln[P:(t)lP:l- 11 (3.34) 
I 

where the constant of integration has been chosen so that definition (3.25) gives (3 .31) .  
This inherent connection between detailed balance and the existence of a scalar 
potential failed to be appreciated by Kikuchi and Gottlieb (1961). They assumed 
detailed balance to be an auxiliary condition which would ensure the time symmetry 
between the causal and anticausal path. While it is true that detailed balance is 
responsible for the time inversion symmetry, it is not an auxiliary condition. Alterna- 
tively, if (3.34) exists then it is tantamount to requiring detailed balance to hold, since 
s* is the gradient of 74" and the circulation around a closed curve p*(t)  ( O s  ts T) 
with p*(O) = p*( T) vanishes, 

(s*, dP*) = w P*( 731 - qy-[ P*(O)I = 0, (3.35) 

and this implies detailed balance (3.32) (It0 1984). 
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Let p ( t ) ,  tos t s t, be any curve, in the space of independent variables, R r - ' ,  that 
connects a subset A, containing the stationary state, of an arbitrary domain D, having 
a smooth boundary dD, to a state y lying in the closure of D. The curve is contained 
entirely in the closure of D and the function W is continuous there, vanishing only 
in A. Once the domain has been chosen, & - t o  becomes the time required for the 
passage. 

Call 

d , , , , , ( p ) : =  5" L[p(f) ,p(f)Idta{i .  [ ( ~ , P ) - H ( s , p ) I d t  (3.36) 

the action, where the (Young's) inequality (Gelfand and Fomin 1963) follows from 
(3.11), and set 

V ( A , y ) = i n f { d , , ~ ( p ) : p ( t , ) ~ A , p ( t , ) = y ;  --cos to< t , s m } .  (3.37) 

10 10 

Suppose that W is a solution of 

H P W y ) ,  Y )  = 0 (3.38) 

for any state y in the closure. Then V(A, y )  = W ( y )  for all y for which the inequality 
-W(y) s min{ W ( x ) :  x E aD} holds. Along the extremal p * (  r )  connecting any state in 
A with y ,  the second integral in (3.36) vanishes. We then have 

L [ p * ( t ) ,  d * ( t ) l =  (d /d t )W[p*( l ) l sO.  (3.39) 

The equality sign can only occur along the causal path where L vanishes. Hence, 
W [  p * (  t ) ]  is a monotonically increasing function of time. In general then &,,,"( p )  a 
W ( y )  where the equality holds along the extremal curve and W ( y )  can be interpreted 
as the minimal action necessary to bring the system from any state in A to that state 
on the boundary for which the inequality W ( y )  < min{ W ( x ) :  x E dD} holds. 

For to= --CO, the trajectory p * ( t )  will enter the domain A of the stationary state. 
This is guaranteed by the fact that there is no finite, positive limit to W [  p (  t ) ]  as t + -cc 
(Freidlin and Wentzell 1984). If such a limit did exist, then it would contradict the 
strict inequality in (3.39) everywhere outside A. Hence, the trajectory p * ( t )  enters A 
as to+ -a for which there is no finite, positive limit to W [ p * ( t ) ] .  

4. Large deviations 

The method of associated distributions is commonly used to study large deviations in 
the sums of random variables (Feller 1971). As mentioned in P 1, the statement of the 
central limit theorem becomes empty for large values of the normalised sum since for 
large x, the actual distribution 9 , ( x )  and the normal distribution 9 ( x )  are both close 
to unity. What we want to determine is how good an approximation 1 - 9 ( x )  will be 
to 1 - 9,(x) for large x and n. 

It is well known that a limiting form of random walk leads to a situation similar 
to a central limit theorem (Feller 1968). The sum S,  respresents the particle's position 
at the nth step. For simplicity, if we set both the length of the individual steps and 
the collisional rate to unity, then S, is the particle's displacement and n is the time 
interval. With this correspondence, we now estimate the relative error in approximating 
the actual distribution by the Onsager-Machlup distribution in the diffusion limit, 
based on the analogy with large deviations and the central limit theorem. 
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It is clear from the definition of H ( s )  in (3.4) that it plays the role of a second 
characteristic function. It can be written in the form 

(4.1) 

where the coefficient hk depends only on the derivative moments and is known as a 
cumulant or semi-invariant of order k. For instance, if we are dealing with a Poisson 
process with rate r and strength s then H ( s )  = r(es - 1) .  The first cumulant is the first 
moment per unit time, r, the second cumulant is the variance per unit time, r, and so 
on. 

With the original distribution 9 we associate a new probability distribution % such 
that 

%(dx) = e-H(s) eSx”8(dx) (4.2) 

equipped with the norming constant e-H(s), and s is a parameter chosen in the interval 
of convergence of H. If, instead of dealing with the derivative moments, we were to 
deal with the moments themselves, the distributions 9* and %* would stand in the 
same relationship as 9 and 24 in (4.2) except that the norming constant must be 
replaced by . Upon inverting the relation, we get 

1 - 9 ( x )  = 1 - F*(xcr&) = eH(s)Ar /xIme-syg* (dy). (4.3) 

Motivated by the analogy with the central limit theorem, we would like to replace %* 
by a normal distribution with density 

[l/f27rH”( s)At)”’] exp{-[y - H‘(s)AtI2/2H”( s ) A t }  (4.4) 

having expectation H‘(s)At and variance H”(s)At. The relative error will be small if 
x - H ’ ( s ) & / u  since then the integral will be close to unity. In this way we can 
derive a good approximation to the left-hand side of (4.3) for certain large values of x. 

With the substitution y = H’(s)At+ ~(H”(s)At) l ’* ,  the right-hand side of (4.3) can 
be written as 

exp{[H(s) - H’(s)s+fH”(s)s’]At}f erf(s(H”ht/2)”’) =: C, (4.5) 
provided x = H’(s)&/u. Expanding the Hamiltonian (2.5) in powers of s, we have 

(4.6) 

where p = rl - r,  and U’ = rl + r,. To focus our attention on the diffusion process, let 
us assume that rl = r,,. Using (4.6), with p = 0, to evaluate the exponential in (4.5), 
we see that it begins with terms of O(s4At) so that 

H ( s )  = ps+$7*s2+~ps3+. . . 

Cs = [ 1 + O(s4At)]{ 1 - %[s( H”(s)A~)”*]}. (4.7) 
If C, is to stand for the tail of the distribution 9 in (4.3) then the arguments of the two 
distributions must be ofthe same order, i.e. the noise strengths = O(x/u&). Using this 
to estimate the first factor in (4.7), we obtain 

[ I  - q X ) ] / [ i  = 1 + 0 ( x 4 / ~ t ) .  (4.8) 
Suppose that xu& represents the maximum displacement Apmax of the particle. 

It is apparent that a diffusion approximation is valid provided s4At + 0 or, what amounts 
to the same, if x = ~ ( A t l ’ ~ ) .  In terms of the maximum displacement this implies that 
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Apmax = o ( A ~ ' / ~ )  which should certainly be satisfied by Brownian motion whose root- 
mean-square displacement Ap,, = O(&). For an exponent greater than or equal to 
i, there is no asymptotic equivalence of [ 1 - 9 ( x ) ]  and [ 1 - 92 (x) ]  and, consequently, 
the diffusion approximation breaks down. The effect of a finite drift will be to bring 
this fractional power close to unity. 

Parenthetically, we observe that a prediction can be made as to the minimum fractal 
dimension for which a diffusion approximation is valid. For ordinary Brownian motion, 
if we change the time interval by a factor of F-*,  the distance changes by a factor of 
F - ' .  The index d = 2  in Fd is known as the fractal dimension (Mandelbrot 1977). 
The degree of crookedness is the amount by which the fractal dimension exceeds the 
topological dimension. For a topological dimension of 1 (a line) a Brownian motion 
path is infinitely crooked. In order for a diffusion approximation to apply, the fractal 
dimension must be greater than $, say for a self-avoiding random walk where d =$ 
The effect of a finite drift will be to reduce the fractal dimension and consequently 
lead to a more orderly path trajectory. 

If an asymptotic equivalence exists, the Lagrangian can be read off the exponent 
in (4.4). We can write it formally as 

U P ,  $1 = ( $ " - d 2 / 2 u 2  (4.9) 

since an instantaneous velocity does not exist. The Lagrangian (4.9) can be taken as 
a measure of the difficulty that the process has in reaching the causal path which is a 
solution of the deterministic rate equation (3.9). The paths of maximum likelihood 
are determined by the vanishing of (4.1). In addition to the deterministic path st  = 0, 
we also have 

s* = -2p /u= (4.10) 

which is proportional to the ratio of the mean and variance in the diffusion limit. The 
relation between (4.10) and the general criterion (3.12) can be seen by employing the 
expansion In z = 2[ ( z  - 1)/( z + 1) + . . .] and discarding terms of O[ ( p /  v')']. 

In regard to our two-level atom model, the critical noise strength, (4.10), can be 
expressed in terms of the deviation of the process from its stationary state value along 
the anticausal path, namely 

s*  = ( p , * ( t )  - P 3 l P ? P ; " .  (4.11) 

The Lagrangian along the critical path is therefore 

L [ p * ( t ) ,  @*(?)I = ( d / d t ) W p * ( t ) l =  s * $ 3 t )  

= ( e l +  e u ) [ ( p , * ( t ) - P ~ ) 2 / P ~ P ; " l ~ 0  (4.12) 

which is seen to vanish only at the stationary state. We now want to compare this 
expression with the entropy production along the critical path in the high-temperature 
limit. 

The entropy production comprises two terms: one due to the system's entropy 
production which, per atom, is 

(4.13) (d/dt)SS[p(t)I  = -(d/dt)  C P i ( t )  Inp,( t )  
I 

and the entropy production of the heat bath 

(d/dt)Sb[p(t)l = (E/T)eb[pu(t) eE"-pf(t)l, (4.14) 
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again given per atom. The entropy production of the heat bath has been defined as 
the energy flowing into the heat bath divided by its temperature (Klein 1958). 

In order to evaluate the total entropy production along the anticausal path, we 
have to reverse the sign of the entropy production of the heat bath in (4.14). Then 
for small deviations from the stationary state and in the high-temperature limit we get 

(d/dt)S[p*(t) l= (d/dt){Ss[p*(t)l- S, [p*( t ) l l  

= -WO) -m2( e,+ ereU + O[(W 73'1 
d 0. (4.15) 

In the high-temperature limit, we can discard terms of O [ ( E / T ) 2 ]  so that the total 
entropy production (4.15) reduces to the negative of the Lagrangian (4.12). Therefore, 
only in the case of small deviations from the stationary state will the persistency of 
irreversible processes be governed by a minimum relative entropy principle (Lavenda 
1985b). 
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